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ABSTRACT.

This paper proves that for no prior probability distribution does the bootstrap (BS) distribution
equal the predictive distribution, for all Bernoulli trials of some fixed size. It then proves that for
no prior will the BS give the same first two moments as the predictive distribution for all size trials.
It ends with an investigation of whether the BS can get the variance correct.

1. Introduction

Say we have a set of N data D that is created by IID sampling a distribution f, and a
statistic S(D) that assigns a number to that data. Our problem is to use D to estimate
the probability of getting statistic value s in N more samples of f.

The vanilla version of the bootstrap procedure (BS) interprets this problem as asking
for an estimate of the standard distribution of 5, P(S | f, N). To create this estimate, first
it many times resamples D (with replacement) according to some D-dependent distribution
(D) [1]. In this way it creates many new data sets D’. BS then estimates the standard
distribution as the distribution of values of S(D’). (In this paper none of the variants of
this vanilla version of the BS will be considered.) In particular, the BS can assign an error
bar to the observed value of the statistic S(D); its estimate of the standard distribution
provides an estimate of the standard error. The power of BS is its wide applicability, the
fact that its error bars behave quite “reasonably” (e.g., they often grow as the size of the
data shrinks), and the empirical fact that it often gives good estimates of error bars.

This paper investigates whether and when the BS can be exactly correct in its answer
to the problem. This question is vacuous if one views the problem of “estimating the
probability of getting ... s in N more samples of f” as estimating P(S | f, N)—the BS
will be correct if f is the empirical distribution given by D. However from a Bayesian
perspective, in the real world we have knowledge of D and none concerning f, so it is more
sensible to view the problem as estimating the predictive distribution P(S of N new data
points sampled from the unknown f | D) than of estimating P(S | f,N). In fact, as its
results are used in practice, the BS is usually treated as though it produces the predictive
distribution.

Accordingly, this paper analyzes whether the BS’s distribution for S can equal the
predictive distribution for some prior P(f), and in this sense is “consistent with probability
theory”. The precise scenario investigated is Bernoulli trials, where S is the number of



positive events in the sample. Intuitively, the question is of whether the “variance” (and
higher moments) in the estimate of S given by the BS can agree with a Bayesian “variance”
(and higher moments).

Recursive relationships are used to prove that there is no prior and no z(D) such that
the distribution of values of S(D’) always equals P(.S | D) for all D of fixed size N. Next it
is shown that there is no prior and no z(D) such the BS and the predictive distribution will
always agree on the first two moments of P(S | D) for all D of any size. Next the question
is investigated of whether just the error bars generated by BS can equal those given by a
Bayesian calculation (i.e., of whether the BS’s variance can be correct). First a preliminary
analysis of going from z(D) to a prior giving the same error bar is presented. Then it is
shown that for only certain Bernoulli scenarios are there z(D)’s that give the same error
bar as the uniform prior’s predictive distribution, and those z(D)’s are derived.

Of course, none of this means that one should not use the BS, even for Bernoulli trials.
Rather it means that if one is completely sure of one’s prior, then one should not use the
BS for Bernoulli trials. How well the BS performs compared to a Bayesian calculation based
on an incorrect prior is the subject of future work.

There has previously been some work on a “Bayesian variant of the BS” [2]. However
one can argue that that technique is, in its essentials, equivalent to direct Monte Carlo
sampling of the predictive distribution. As such, the question of whether it (or slight
modifications of it) can give the predictive distribution is mute. Accordingly, in this paper
only the conventional non-Bayesian variant of the BS—by far the more popular variant in
the BS community—is addressed.

2. Preliminaries

To be more precise, say we have N IID Bernoulli trials (e.g., N flips of the same coin),
giving n positives. We want the probability of k£ positives in the next N Bernoulli trials,
or moments of that probability. (That number of positives k is the statistic S, and the n
out of N positives is the data D.) Let p be the true probability of a positive in any single
trial. Then P(k|n) = [dp P(k|p,n) P(p|n).

Now P(k | p,n) = P(k|p) = CN p* (1-p)N=*, where C‘; = 5 (j'_ 5 Furthermore,
P(p|n) = P(n|p) P(p)/ P(n), which in turn is given by p* (1—p)N=" P(p) / [dpp™ (1-
p)N =" P(p). Therefore

_ o JdppmtF (1= p)*N TR P(p)
P(k|n)=Cl [dp p* (1 — p)N=" P(p)

As shorthand, define P;; = [dp p' (1—p)’ P(p), so that Eq. (1) becomes

Proyk2N—n—k

In the BS, one uses an estimator for p based on n and N, z(n, N), and calculates the
probability of k given that p = z(n). (Rather than the probability of sampling a particular
datum, from now on “z(.)” means the probability with which the set of all positives in



the data is sampled.) So rather than directly calculate P(k | n), in the BS one instead
calculates the surrogate P(k | n, p = z(n,N)) = CV [z(n, N)]* [1 — z(n, N)]V 5. (As
the BS is usually practiced, this calculation is accomplished by Monte Carlo sampling, but
that is not important for current purposes.) The question is whether this surrogate can
equal P(k | n).

The crucial difference between the BS’s calculation and direct evaluation of the predic-
tive distribution is that the BS is based on a single (estimate of) p, whereas the predictive
distribution averages over all p. This is similar to the distinction between ML-II, where
one fixes a hyperparameter to a single value, and the full hierarchical Bayesian approach,
in which one averages over that hyperparameter. Since ML-II can be a poor approximation
to the hierarchical calculation even when the posterior probability of the hyperparameter
is sharply peaked [3], one might suspect that the BS has a difficult time agreeing with the
predictive distribution.

3. Disagreement for the full distribution, for some k£ and n

Evidently the BS distribution will agree with the predictive distribution for all £ €
{0,...N}and all n € {0,...N} iff the following holds for all such k and n:

[z(n)]F [1 —2(n)]VF = PHZQJJVV__:_IC (3)

It turns out that the only estimator that (might) meet the constraint of Eq. (3) is the
absurd estimator {all z(¢) are the same constant, z}. To see this, write

PrykoN—n—k _ PrykoN—n—t | PuN-n
Prtkt1 2N —n—kx(-1) Py k1) 2N-n—(kt1) /| PuN-n
Now use Eq. (3):
ProykaN—n—k _ [2(n)]F [1 = 2(n)]VF
Pt k12N —n—kt(-1) [@(n)]F£L [1 — a(n)|N-F£(=1)

1—a(n), 41
= {W} : (4)
For the positive exponent, this equality must hold foralln € {0,...N},k € {0,...N—
1} (k € {1,...N} for the negative exponent). In particular, for the positive exponent it
must hold foralln € {1,...N}and ¥ = N —n (and similarly for the negative exponent).
Therefore for the positive exponent, foralln € {1,...N}, ({0,...N — 1} for the negative
exponent),

Py .y _ {1 - w(n)}ﬂ_
Pyni1 Nt(-1) z(n)

Since the left-hand side is independent of n, by the positive exponents we know that
[1—az(i)]/z(t) = [1—a(j)] / 2(j) forall 4,5 € {1,...N}, which means that for fixed



N,z(n) is independent of n for n € {1...N}. Assuming N > 2, the negative exponent
case then extends this to alln € {0,...N}. (As an aside, this extension of the exponents
means that PN—LN-H PN-l—l,N—l = [PN,N]Q-)

The immediate conclusion is that the distribution calculated by the BS can not be
P(k | n) for any reasonable estimator of p, z(n). Moreover, as is proven in the appendix,
the only P(p) which gives rise to a P(k | n) of the form C¥ 2% [1 — 2]V=* for all {k, N} is
P(p) = 6(p - constant), a clearly absurd prior.

Presumably BS probability distributions can, in many regimes of the Bernoulli problem,
be good approximators of P(k | n). However those distributions will never equal P(k | n)
exactly for all n and & for any reasonable prior.

4. Disagreement of the first two moments, for some n and N

This section addresses the issue of whether BS can even get the first two moments correct,
for all n and N. First, write

E(k|n,N)

N
>k Pk|n)
k=0

Jdp P(p) p" (1 —p)N™" 0o kCY pF (1= p)NF
[dp P(p) p* (1 —p)N-" '

Using the fact that Ei\;o ECN pf (1 —-p)N=F = Np, we get

PTL —n
E(k|n,N)= N b= (5)

Using similar reasoning,

N (AT - 1) Pn—l—?,N—n + N Pn—}-l,N—n

E(k*|n,N) =
(k*| n,N) Ponn

(6)

Now by Eq. (5), for BS to get the first moment right, z(n) must be equal to the
ratio P41 N—p / PunN—n. Then by Eq. (6), for BS to get the second moment right,

z%(n) N (N —1) + Nz(n) = =~ (v-1) P"+2]5N;V"_+ N Prt1Non  Therefore if the first
moment is also correct, we have 2*(n) = P2 n-n / Pun—n. Combining,
Pn N-—-n 2

We want this to hold for all pairs of values {N > 1,0 < n < N}.
Define D; = [dp p; P(p). Consider the n = N case (son > 1). By Eq. (7)

2
(D;%l) = Dy4g, le., g—“f = Dﬁ'—l. This must hold for all n > 1; for all such n,
Dn-l-l _ D2 —

b = p- = o This in turn means that for all such n, D, = D; o™ L.



(Dn-l-l _ Dn+2)2

Now consider the case N = n+ 1 (son > 0). We have Dn = Drgy) = Dyyo —

D,y3. Taken = 0,use Dy = 1, and for the other D, use D, = D, a™~1. This gives
2 2

% = D; [a — a?. Cancelling terms and solving, we get D; = a. So for all

n > 0,D, = a”.

This means that Dy — (Dy)?, the variance of P(p), is 0. The only way this can
be is if P(p) is a Dirac delta function about some constant ¢. This in turn means that
E(k|n) = ¢, which means that z(n) = ¢ for all n; a clear absurdity.

The preceding relied on looking at all n, N. In contrast, the proof concerning the full
distribution over k (see the previous section) has N fixed, but varies over all (allowed by
N) values of n and k. In addition, the arguments in both sections relied on allowing the
n = N and n = 0 cases. It is not immediately clear how things are changed if we simply
decide to disallow those cases, as in [2].

5. Getting the variance right—going from z(n) to P(p)

The results of the previous section notwithstanding, one might wish to use the BS with
an z(n) such that the standard deviation of the BS distribution over k, CY [z(n)]* [1 —
z(n)]N~*, is also the standard deviation of P(k | n), for some P(p), forall N > 0,n < N
(even though the BS distribution can not equal P(k | n) or even get the first two moments
exactly right). In general, the procedure for going from z(n) to a P(p) giving the same
variance is the following.

The (squared) variance of k corresponding to z(n) is N z(n) (1 — z(n)). To find the
variance given by a P(p), use Eq.’s (5) and (6). Next set the two variances equal and solve
for PoyoN_p: foralln € {0,...N},

2(n) (1= 2(n)) Pun—n + (Xprtll=n _ 1) Py,

n,N—n

N -1

Pn+2,N—n =

To proceed further one must conduct an analysis similar to that in the appendix; expand
the P’s in terms of D;, and solve. As in the appendix, having the requirement on the
equalities hold for all possible {n, N} might result in there being no P(p) which solves the
equations. Unfortunately, time constraints did not allow such an analysis for this paper.

However consider the special case where we use a frequency counts estimator, z(n) =
n/N, and have n = 0 or N, or in any other way allow the estimate of the variance to equal 0.
For such a scenario, for that n, P(k | n) must be a delta function. So there are N — 1 values
of k for which P(k|n) = 0. Looking at Eq. (1), we see that since p"t* (1 — p)2N=n=F ig
greater than 0 for all p € the interval (0, 1), the only way that P(k | n) can equal 0 is if
P(p)is0forall p € (0,1). So P(p) must equal either §(p) or é(p—1). This means that the
variance always equals 0, regardless of n. This rules out the frequency counts estimator,
and makes any estimator which can estimate the variance as 0 seem rather absurd.

6. Getting the variance right—going from P(p) to z(n)

It is usually easier to go from a P(p) to an z(n) with the same variance than visa-versa.

As an example, assume that P(p) is uniform. Then using Eq. (5), E(k | n,N) = N ]@‘:_12

which of course is just what one would expect from Laplace’s law of succession. (In fact,




regardless of the prior P(p), E(k|n,N) = N [dpp P(p|n) = N X the “Bayesian”
estimate of the average p, given n.)
In a similar manner, we can derive

N(N-1)(n+2)(n+1) N (n+1)

E(E*|n,N) =
(K| n, N) (N+3) (N +2) N +2

Collecting terms, after a bit of algebra we get

E(k* | n,N) — [E(k]|n,N)?
N
2(N +1) 9 9
= N+2)/4 — - (N/2 8
e AN DY — (0 = (/2 (%)
By inspection, x(N — n,N) = x(n,N), as it should. We want N z(n) [1 — z(n)] =
N x(n,N) forall n € {0,...N}. The solution is

x(n,N) =

1+ 1 — 4x(n,N)

z(n) = 5 . (9)

Now we would like to have z(n) + (N —n) = 1, since intuitively z(n) is the (estimate
of ) the probability of a positive event, and then by symmetry (redefine what is a “positive”
versus a “negative” event), (N — n) is the probability of a negative event. To obey this
equality we can use the negative root for the lower N/2 values of n in Eq. (9), and the
positive root for the upper N/2 values.

So for BS to give the same variance one would have with a uniform P(p), one should do
the Monte Carlo sampling according to a distribution in which each of the positive events
have probability @(n)/n (z(n) being the probability of the set of all positive events), and all
the negative events have probability wg{,v__nn) = 1;,71(2). If no positive events occur (n = 0),
then one must still assign probability [1 — z(0)]/N to all of the negative events, but one
must also assign probability z(0) to a positive event, despite the fact that no such positive
event is in the original sample. In other words, one must make up an event and add it to
the original sample. (Similarly if no negative events occur.)

Note that z(n) is only real if x(n, N) < 1/4. Therefore, since probabilities must be real,
it is necessary that

N + 3

(n — (N/2))* =2 (N + 2)*[1/4 SV 1)

] (10)
For N = 1, this condition is satisfied by all n. For N = 2, it reduces to |n — 1| >
\/2/3, which means that n can only equal 0 or 2. For large N, the requirement becomes
In — (N/2)| > N/+/8, which is satisfied by N(1 — 1/+/2) values of n.

In fact, for N large, we can write down immediately

pny = L V-1 —|—28(R — 12 (1)




where R = n/N. Taking the negative root for R < 1/2, and the positive root for
R > 1/2,this z(n) has the value 0 at R = 0, rises to 1/2 for R = (1/2)[1 — /1/2], is
complex up to (1/2) [1 + 1/1/2], where it again has the value 1/2, and rises from there up
to the value 1 at R = 1.

It is interesting to note that for large N, this z(n), the estimator of p that gives the
correct variance, agrees more and more with the frequency count estimator of p as one
moves towards the limits R = 0, 1. In contrast, the Laplace’s law of succession estimator of
p disagrees more and more with the frequency count estimator as one moves towards those
limits. This despite the fact that the Laplace estimator, like the z(n) estimator, is based
on a uniform P(p).

7. Future work

The kind of analysis done here can also be done when there are multiple possible events,
and when the statistic is a more complicated function than counting the number of events
of a given class. Other future work involves seeing how close BS can get to the predictive
distribution. It may well be that although it can not given that distribution exactly, it can
give a very close approximation to it.

8. APPENDIX

This appendix solves for the P(p) which satisfies Eq. (3) for all N,n and k. First, since
z(n) is independent of n, using the positive exponent and defining ¢ = n + k, Eq. (4) tells
us that for all ¢ € {0,...2N —1}, % is the constant 2 /(1 —z) (« being the value
shared by all N of the z(n)). Define r = z/(1 — z):

P.on_; = arj, 12
7y J

where a, like 7, is an as of yet undetermined constant.!
Now recall D; = [dp p’ P(p). Using this, the binomial expansion, Eq. (12), and the

definition of P, y;2N—n—k, and defining m = n + k, one derives
2N—m )
Y (-1) Dy CFN7™ = a ™ (13)
1=0

forall m € {0,...2N}.

Start with m = 2N, and thereby get Doy = o 2. By iteratively decrementing m,
we can solve for the other Dopn_,,. This solution is unique. Therefore any formula for the
D; that solves Eq. (13) for all 2N of the m must be the unique solution to Eq. (13). This
solution is given by the following;:

_ 2N 2N —j
D; = are’ (141/r)~" 7. (14)
! As an aside, note that by returning to Eq. (3) and setting k to 0, we see that P n—n = F()’J‘jf)}," =

ar® (1- z)_N; so with 3 = a(1+ T)N, we can write P; y_; = 6ri.



Proof: Plugging Eq. (14) into Eq. (13), we get

2N—-m
’I"2N Z (_1)2 (1_|_ 1/7?)2N—m—i C?N_m = pm

1=0

as the equality that must be satisfied. This equality in turn implies

2N—m

2N—-m (T 11 2N—m ARY 2N—m
2: — ) = 1. 15

The sum = [1 — HT_—I]?N_m = (r+ 1)V 5o we do get 1 as required. QED.

Now Do must equal 1, since P(p) is normalized. But by Eq. (14), Dy = a 72V (1 +
1/r)*N. Therefore D; = (1+1/r)77. This in turn means that Dy = (D;)%. An immediate
consequence is that the variance of P(p)is 0. The only way that can be is if P(p) is a Dirac
delta function. This completes the argument.
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